sábado, 1 de septiembre de 2018

Tipos de enlace



Los átomos se unen entre sí para formar moléculas mediante fuerzas de enlace. Los tipos fundamentales de enlace son el iónico, el covalente y el metálico. A continuación se describen cada uno de los tipos de enlace y sus características principales.

Enlace iónico
El enlace iónico consiste en la atracción electrostática entre átomos con cargas eléctricas de signo contrario. Este tipo de enlace se establece entre átomos de elementos poco electronegativos con los de elementos muy electronegativos. Es necesario que uno de los elementos pueda ganar electrones y el otro perderlo, y como se ha dicho anteriormente este tipo de enlace se suele producir entre un no metal (electronegativo) y un metal (electropositivo).

Un ejemplo de sustancia con enlace iónico es el cloruro sódico. En su formación tiene lugar la transferencia de un electrón del átomo de sodio al átomo de cloro. Las configuraciones electrónicas de estos elementos después del proceso de ionización son muy importantes, ya que lo dos han conseguido la configuración externa correspondiente a los gases nobles, ganando los átomos en estabilidad. Se produce una transferencia electrónica, cuyo déficit se cubre sobradamente con la energía que se libera al agruparse los iones formados en una red cristalina que, en el caso del cloruro sódico, es una red cúbica en la que en los vértices del paralelepípedo fundamental alternan iones Cl- y Na+. De esta forma cada ion Cl- queda rodeado de seis iones Na+ y recíprocamente. Se llama índice de coordinación al número de iones de signo contrario que rodean a uno determinado en una red cristalina. En el caso del NaCl, el índice de coordinación es 6 para ambos

Los compuestos iónicos estado sólido forman estructuras reticulares cristalinas. Los dos factores principales que determinan la forma de la red cristalina son las cargas relativas de los iones y sus tamaños relativos. Existen algunas estructuras que son adoptadas por varios compuestos, por ejemplo, la estructura cristalina del cloruro de sodio también es adoptada por muchos haluros alcalinos y óxidos binarios, tales como MgO.

Disposición de la red cristalina en el NaCl
Disposición de la red cristalina en el NaCl

Propiedades de los compuestos iónicos
Las sustancias iónicas están constituidas por iones ordenados en el retículo cristalino; las fuerzas que mantienen esta ordenación son fuerzas de Coulomb, muy intensas. Esto hace que las sustancias iónicas sean sólidos cristalinos con puntos de fusión elevados. En efecto, para fundir un cristal iónico hay que deshacer la red cristalina, separar los iones. El aporte de energía necesario para la fusión, en forma de energía térmica, ha de igualar al de energía reticular, que es la energía desprendida en la formación de un mol de compuesto iónico sólido a partir de los correspondientes iones en estado gaseoso. Esto hace que haya una relación entre energía reticular y punto de fusión, siendo éste tanto más elevado cuanto mayor es el valor de aquella.

Por otra parte, la aparición de fuerzas repulsivas muy intensas cuando dos iones se aproximan a distancias inferiores a la distancia reticular (distancia en la que quedan en la red dos iones de signo contrario), hace que los cristales iónicos sean muy poco compresibles. Hay sustancias cuyas moléculas, si bien son eléctricamente neutras, mantienen una separación de cargas. Esto se debe a que no hay coincidencia entre el centro de gravedad de las cargas positivas y el de las negativas: la molécula es un dipolo, es decir, un conjunto de dos cargas iguales en valor absoluto pero de distinto signo, separadas a una cierta distancia. Los dipolos se caracterizan por su momento; producto del valor absoluto de una de las cargas por la distancia que las separa. Un de estas sustancias polares es, por ejemplo el agua.



Cuando un compuesto iónico se introduce en un disolvente polar, los iones de la superficie de cristal provocan a su alrededor una orientación de las moléculas dipolares, que enfrentan hacia cada ion sus extremos con carga opuesta a la del mismo. En este proceso de orientación se libera una energía que, si supera a la energía reticular, arranca al ion de la red. Una vez arrancado, el ion se rodea de moléculas de disolvente: queda solvatado. Las moléculas de disolvente alrededor de los iones se comportan como capas protectoras que impiden la reagrupación de los mismos. Todo esto hace que, en general, los compuestos iónicos sean solubles en disolventes polares, aunque dependiendo siempre la solubilidad del valor de la energía reticular y del momento dipolar del disolvente. Así, un compuesto como el NaCl, es muy soluble en disolventes como el agua, y un compuesto como el sulfato de bario, con alta energía reticular, no es soluble en los disolventes de momento dipolar muy elevado.

Enlace covalente
Lewis expuso la teoría de que todos los elementos tienen tendencia a conseguir configuración electrónica de gas noble (8 electrones en la última capa). Elementos situados a la derecha de la tabla periódica ( no metales ) consiguen dicha configuración por captura de electrones; elementos situados a la izquierda y en el centro de la tabla ( metales ), la consiguen por pérdida de electrones. De esta forma la combinación de un metal con un no metal se hace por enlace iónico; pero la combinación de no metales entre sí no puede tener lugar mediante este proceso de transferencia de electrones; por lo que Lewis supuso que debían compartirlos.

Es posible también la formación de enlaces múltiples, o sea, la compartición de más de un par de electrones por una pareja de átomos. En otros casos, el par compartido es aportado por sólo uno de los átomos, formándose entonces un enlace que se llama coordinado o dativo. Se han encontrado compuestos covalentes en donde no se cumple la regla. Por ejemplo, en BCl3, el átomo de boro tiene seis electrones en la última capa, y en SF6, el átomo de azufre consigue hasta doce electrones. Esto hace que actualmente se piense que lo característico del enlace covalente es la formación de pares electrónicos compartidos, independientemente de su número.

Fuerzas intermoleculares
A diferencia que sucede con los compuestos iónicos, en las sustancias covalentes existen moléculas individualizadas. Entre estas moléculas se dan fuerzas de cohesión o de Van der Waals, que debido a su debilidad, no pueden considerarse ya como fuerzas de enlace. Hay varios tipos de interacciones: Fuerzas de orientación (aparecen entre moléculas con momento dipolar diferente), fuerzas de inducción (ion o dipolo permanente producen en una molécula no polar una separación de cargas por el fenómeno de inducción electrostática) y fuerzas de dispersión (aparecen en tres moléculas no polares).

Propiedades de los compuestos covalentes
Las fuerzas de Van der Waals pueden llegar a mantener ordenaciones cristalinas, pero los puntos de fusión de las sustancias covalentes son siempre bajos, ya que la agitación térmica domina, ya a temperaturas bajas, sobre las débiles fuerzas de cohesión. La mayor parte de las sustancias covalentes, a temperatura ambiente, son gases o líquidos de punto de ebullición bajo (por ejemplo el agua). En cuanto a la solubilidad, puede decirse que, en general, las sustancias covalentes son solubles en disolventes no polares y no lo son en disolventes polares. Se conocen algunos sólidos covalentes prácticamente infusibles e insolubles, que son excepción al comportamiento general descrito. Un ejemplo de ellos es el diamante. La gran estabilidad de estas redes cristalinas se debe a que los átomos que las forman están unidos entre sí mediante enlaces covalentes. Para deshacer la red es necesario romper estos enlaces, los cual consume enormes cantidades de energía

Electrovalencia y covalencia
Teniendo presenta las teorías de los enlaces iónicos y covalentes, es posible deducir la valencia de un elemento cualquiera a partir de su configuración electrónica.

La electrovalencia, valencia en la formación de compuestos iónicos, es el número de electrones que el átomo tiene que ganar o perder para conseguir la configuración de los gases nobles.
La covalencia, número de enlaces covalentes que puede formar un átomo, es el número de electrones desapareados que tiene dicho átomo. Hay que tener presente que un átomo puede desaparecer sus electrones al máximo siempre que para ello no haya de pasar ningún electrón a un nivel energético superior.
ENLACE METÁLICO
Los elementos metálicos sin combinar forman redes cristalinas con elevado índice de coordinación. Hay tres tipos de red cristalina metálica: cúbica centrada en las caras, con coordinación doce; cúbica centrada en el cuerpo, con coordinación ocho, y hexagonal compacta, con coordinación doce. Sin embargo, el número de electrones de valencia de cualquier átomo metálico es pequeño, en todo caso inferior al número de átomos que rodean a un dado, por lo cual no es posible suponer el establecimiento de tantos enlaces covalentes.

En el enlace metálico, los átomos se transforman en iones y electrones, en lugar de pasar a un átomo adyacente, se desplazan alrededor de muchos átomos. Intuitivamente, la red cristalina metálica puede considerarse formada por una serie de átomos alrededor de los cuales los electrones sueltos forman una nube que mantiene unido al conjunto.

POLARIDAD DE LOS ENLACES
En el caso de moléculas heteronucleares, uno de los átomos tendrá mayor electronegatividad que el otro y, en consecuencia, atraerá mas fuertemente hacia sí al par electrónico compartido. El resultado es un desplazamiento de la carga negativa hacia el átomo más electronegativo, quedando entonces el otro con un ligero exceso de carga positiva. Por ejemplo, en la molécula de HCl la mayor electronegatividad del cloro hace que sobre éste aparezca una fracción de carga negativa, mientras que sobre el hidrógeno aparece una positiva de igual valor absoluto. Resulta así una molécula polar, con un enlace intermedio entre el covalente y el iónico.

Leyes fundamentales de la quimica


La ley de conservación de la masa, ley de conservación de la materia o ley de Lomonósov-Lavoisier es una de ley fundamental de las ciencias naturales. Fue elaborada independientemente por Mijaíl Lomonósov en 1748 y descubierta unos años después por Antoine Lavoisier en 1785. Se puede enunciar de la siguiente manera:

«En un sistema aislado, durante toda reacción química ordinaria, la masa total en el sistema permanece constante, es decir, la masa consumida de los reactivos es igual a la masa de los productos obtenidos».1​


Esta ley es fundamental para una adecuada comprensión de la química. El principio es bastante preciso para reacciones de baja energía. En el caso de reacciones nucleares o colisiones entre partículas en altas energías, en las que definición clásica de masa no aplica, hay que tener en cuenta la equivalencia entre masa y energía.





La ley de las proporciones constantes o ley de las proporciones definidas es una de las leyes estequiométricas enunciada en el año 1795, según la cual cuando se combinan dos o más elementos para dar un determinado compuesto, siempre lo hacen en una relación constante de masas. Fue enunciada por el farmacéutico y químico francés Louis Proust, basándose en experimentos que llevó a cabo a principios del siglo XIX; por lo tanto, también se conoce como la ley de Proust.


Para los compuestos que la siguen, por tanto, la proporción de masas entre los elementos que los forman es constante. En términos más modernos de la fórmula molecular, esta ley implica que siempre se van a poder asignar subíndices fijos a cada compuesto. Hay que notar que existe una clase de compuestos, denominados compuestos no estequiométricos (también llamados bertólidos), que no siguen esta ley. Para estos compuestos, la razón entre los elementos puede variar continuamente entre ciertos límites. Naturalmente, otros materiales como las aleaciones o los coloides, que no son propiamente compuestos sino mezclas, tampoco siguen esta ley. Se le llama materia a todo aquello que tiene masa y ocupa un lugar en el espacio. En la mayoría de los casos, la materia se puede percibir o medir mediante distintos métodos de química analítica.




Ley de las proporciones multiples:
Esta ley afirma que cuando dos elementos se combinan para originar distintos compuestos, dada una cantidad fija de uno de ellos, las diferentes cantidades del otro que se combinan con dicha cantidad fija para dar como producto los compuestos, están en relación de números enteros sencillos. Esta fue la última de las leyes ponderales en postularse. Dalton trabajó en un fenómeno del que Proust no se había percatado, y es el hecho de que existen algunos elementos que pueden relacionarse entre sí en distintas proporciones para formar distintos compuestos. Así, por ejemplo, hay dos óxidos de cobre, el CuO y el Cu2O, que tienen un 79,89 % y un 88,82 % de cobre, respectivamente, y que equivalen a 3,973 gramos de cobre por gramo de oxígeno en el primer caso y 7,945 gramos de cobre por gramo de oxígeno en el segundo. La relación entre ambas cantidades es de 1:2 como se expresa actualmente con las fórmulas de los compuestos derivados de la teoría atómica.












Enlace Quimico


Un enlace químico es el proceso químico responsable de las interacciones atractivas entre átomos y moléculas,1​y que confiere estabilidad a los compuestos químicos diatómicos y poliatómicos. La explicación de tales fuerzas atractivas es un área compleja que está descrita por las leyes de la química cuántica.

Una definición más sencilla es que un enlace químico es la fuerza existente entre los átomos una vez que se ha formado un sistema estable.2​

Las moléculas, cristales, metales y gases diatómicos (que forman la mayor parte del ambiente físico que nos rodea) están unidos por enlaces químicos, que determinan las propiedades físicas y químicas de la materia.

Las cargas opuestas se atraen porque al estar unidas adquieren una situación más estable que cuando estaban separadas. Esta situación de mayor estabilidad suele darse cuando el número de electrones que poseen los átomos en su último nivel es igual a ocho, estructura que coincide con la de los gases nobles ya que los electrones que orbitan el núcleo están cargados negativamente, y que los protones en el núcleo lo están positivamente, la configuración más estable del núcleo y los electrones es una en la que los electrones pasan la mayor parte del tiempo entre los núcleos, que en otro lugar del espacio. Estos electrones hacen que los núcleos se atraigan mutuamente.




Formula estructural


Fórmula estructural de la vitamina B12. Muchas moléculas orgánicas son muy complicadas para especificarlas con una fórmula química (fórmula molecular).
La fórmula estructural de un compuesto químico es una representación gráfica de la estructura molecular, que muestra cómo se ordenan o distribuyen espacialmente los átomos. Se muestran los enlaces químicos dentro de la molécula, ya sea explícitamente o implícitamente. Por tanto, aporta más información que la fórmula molecular o la fórmula desarrollada.1​ Hay tres representaciones que se usan habitualmente en las publicaciones: fórmulas semidesarrolladas, diagramas de Lewis y en formato línea-ángulo. Otros diversos formatos son también usados en las bases de datos químicas, como SMILES, InChI y CML.

A diferencia de las fórmulas químicas o los nombres químicos, las fórmulas estructurales suministran una representación de la estructura molecular. Los químicos casi siempre describen una reacción química o síntesis química usando fórmulas estructurales en vez de nombres químicos, porque las fórmulas estructurales permiten al químico visualizar las moléculas y los cambios que ocurren.

Muchos compuestos químicos existen en diferentes formas isoméricas, que tienen diferentes estructuras pero la misma fórmula química global. Una fórmula estructural indica la ordenación de los átomos en el espacio mientras que una fórmula química no lo hace.



Las estructuras de Lewis2​ y las fórmulas desarrolladas son fórmulas gráficas planas que muestran la conectividad entre átomos, pero a las que falta información sobre la estructura tridimensional de las moléculas. Los diagramas de Lewis son usados sobre todo para moléculas lineales pequeñas o con compuestos inorgánicos. Una línea sencilla (-) representa un enlace sencillo entre dos átomos o un par de electrones no compartido. :





Formula Molecular


La fórmula molecular expresa el número real de átomos que forman una molécula a diferencia de la fórmula química que es la representación convencional de los elementos que forman una molécula o compuesto químico. Una fórmula molecular se compone de símbolos y subíndices numéricos; los símbolos corresponden a los elementos que forman el compuesto químico representado y los subíndices son la cantidad de átomos presentes de cada elemento en el compuesto.1​ Así, por ejemplo, una molécula de ácido sulfúrico, descrita por la fórmula molecular H2SO4 posee dos átomos de hidrógeno, un átomo de azufre y cuatro átomos de oxígeno. El término se usa para diferenciar otras formas de representación de estructuras químicas, como la fórmula desarrollada o la fórmula esqueletal. La fórmula molecular se utiliza para la representación de los compuestos inorgánicos y en las ecuaciones químicas. También es útil en el cálculo de los pesos moleculares. En un sentido estricto, varios compuestos iónicos, como el carbono o el cloruro de sodio o sal común no pueden ser representados por una fórmula molecular ya que no es posible distinguir átomos o moléculas independientes y por ello, sólo es posible hablar de fórmula empírica. Ejemplo: NaCl es la fórmula del cloruro de sodio, e indica que por cada ion sodio, existe un ion cloro.1​



Formula empirica


En química la fórmula empírica es una expresión que representa la proporción más simple en la que están presentes los átomos que forman un compuesto químico. Es por tanto la representación más sencilla de un compuesto.1​ Por ello, a veces, se le llama fórmula mínima y se representa con "fm".

Una fórmula es una pequeña lista de los elementos químicos que forman una sustancia, con alguna indicación del número de moles de cada elemento presente y, a veces, la relación que tiene con otros elementos de la misma sustancia.

Comúnmente, las fórmulas empíricas son determinadas a partir de datos experimentales, de ahí su nombre, fórmula empírica.

Por ejemplo, si observamos que dos moles de hidrógeno reaccionan completamente con un mol de oxígeno para formar dos moles de agua (sin generar otro producto), diríamos que la fórmula molecular del agua es H2O (los subíndices 1 se omiten). Del mismo modo, si observamos que al quemar benceno, siempre obtenemos números iguales de moles de C (contenido en el CO2 formado) y de H (monoatómico, existente en el agua producida) podemos decir que la fórmula empírica del benceno es (CH). Midiendo cuidadosamente el oxígeno consumido, veríamos que todo el oxígeno del CO2 y del H2O proviene del aire, por lo que la fórmula empírica del benceno es (CH). Puede coincidir o no con la fórmula molecular, que indica el número de átomos de cada clase presentes en la molécula.



El procedimiento de cálculo más común es el inicialmente propuesto por Pauling. El resultado obtenido mediante este procedimiento es un número adimensional que se incluye dentro de la escala de Pauling. Esta escala varía entre 0,65 para el elemento menos electronegativo (francio) y 4,0 para el mayor (flúor).

Es interesante señalar que la electronegatividad no es estrictamente una propiedad atómica, pues se refiere a un átomo dentro de una molécula3​ y, por tanto, puede variar ligeramente cuando varía el "entorno"4​ de un mismo átomo en distintos enlaces de distintas moléculas. La propiedad equivalente de la electronegatividad para un átomo aislado sería la afinidad electrónica o electroafinidad.

Dos átomos con electronegatividades muy diferentes forman un enlace iónico. Pares de átomos con diferencias pequeñas de electronegatividad forman enlaces covalentes polares con la carga negativa en el átomo de mayor electronegatividad.

Eletronegatividad

La electronegatividad es la capacidad de un átomo para atraer a los electrones, cuando forma un enlace químico en una molécula.1​ También debemos considerar la distribución de densidad electrónica alrededor de un átomo determinado frente a otros distintos, tanto en una especie molecular como en sistemas o especies no moleculares.

La electronegatividad de un átomo determinado está afectada fundamentalmente por dos magnitudes: su masa atómica y la distancia promedio de los electrones de valencia con respecto al núcleo atómico. Esta propiedad se ha podido correlacionar con otras propiedades atómicas y moleculares. Fue Linus Pauling el investigador que propuso esta magnitud por primera vez en el año 1932, como un desarrollo más de su teoría del enlace de valencia.2​ La electronegatividad no se puede medir experimentalmente de manera directa como, por ejemplo, la energía de ionización, pero se puede determinar de manera indirecta efectuando cálculos a partir de otras propiedades atómicas o moleculares.

Se han propuesto distintos métodos para su determinación y aunque hay pequeñas diferencias entre los resultados obtenidos todos los métodos muestran la misma tendencia periódica entre los elementos.

El procedimiento de cálculo más común es el inicialmente propuesto por Pauling. El resultado obtenido mediante este procedimiento es un número adimensional que se incluye dentro de la escala de Pauling. Esta escala varía entre 0,65 para el elemento menos electronegativo (francio) y 4,0 para el mayor (flúor).

Es interesante señalar que la electronegatividad no es estrictamente una propiedad atómica, pues se refiere a un átomo dentro de una molécula3​ y, por tanto, puede variar ligeramente cuando varía el "entorno"4​ de un mismo átomo en distintos enlaces de distintas moléculas. La propiedad equivalente de la electronegatividad para un átomo aislado sería la afinidad electrónica o electroafinidad.

Dos átomos con electronegatividades muy diferentes forman un enlace iónico. Pares de átomos con diferencias pequeñas de electronegatividad forman enlaces covalentes polares con la carga negativa en el átomo de mayor electronegatividad.